Question #fbdf4
1 Answer
Explanation:
Depends on what tools you have available.
Using the chain rule, along with the known derivative
#=5(1/(5x))(d/dx5x)#
#=5(1/(5x))(5)#
#=5/x#
Using implicit differentiation:
Let
#=(5^6x^4)/(5^5x^5)#
#=5/x#
Using the definition of a derivative:
#=5lim_(h->0)(ln(5(x+h))-ln(5x))/h#
#=5lim_(h->0)ln((5(x+h))/(5x))/h#
#=5lim_(h->0)1/hln(1+h/x)#
#=5lim_(h->0)ln[(1+h/x)^(1/h)]#
#=5lim_(h->0)ln[(1+(1/x)/(1/h))^(1/h)]#
Substitute
#=5lim_(u->oo)ln[(1+(1/x)/u)^u]#
#=5ln(e^(1/x))#
#=5/xln(e)#
#=5/x#