How do you find the zeros of #g(x) = 4x^2-2x-3# using the quadratic formula?
1 Answer
Explanation:
#g(x) = 4x^2-2x-3#
is in the standard form
We can find the zeros of
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (2+-sqrt((-2)^2-4(4)(-3)))/(2*4)#
#color(white)(x) = (2+-sqrt(4+48))/8#
#color(white)(x) = (2+-sqrt(52))/8#
#color(white)(x) = (2+-sqrt(2^2*13))/8#
#color(white)(x) = (2+-2sqrt(13))/8#
#color(white)(x) = 1/4+-sqrt(13)/4#
Footnotes
Given any quadratic equation in the form
the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
is very useful, but do you know where it comes from, how it works or how to derive it yourself?
Here's one way...
Given
#0 = ax^2+bx+c#
#color(white)(0) = a(x^2+2b/(2a)x + b^2/(4a^2) - b^2/(4a^2) + c/a)#
#color(white)(0) = a((x+b/(2a))^2-(b^2-4ac)/(4a^2))#
#color(white)(0) = a((x+b/(2a))^2-(sqrt(b^2-4ac)/(2a))^2)#
#color(white)(0) = a((x+b/(2a))-(sqrt(b^2-4ac)/(2a)))((x+b/(2a))+(sqrt(b^2-4ac)/(2a)))#
#color(white)(0) = a(x+(b-sqrt(b^2-4ac))/(2a))(x+(b+sqrt(b^2-4ac))/(2a))#
Hence:
#x = (-b+-sqrt(b^2-4ac))/(2a)#