Question #02bba

1 Answer
Nov 2, 2016

Given # 0< u< pi/2 # and #tanu=5/3#

we get #u=tan^-1(5/3)~~59^@#

So #2u=118^@->"In 2nd quadrant"#

Hence #sin2u->"+ve"#

But #tan2u and cos 2u ->"-ve"#

Now

#sin2u=(2tanu)/(1+tan^2u)#

#=>sin2u=(2xx5/3)/(1+(5/3)^2)=10/3xx9/34=15/17#

#cos2u=-(1-tan^2u)/(1+tan^2u)#

#=>cos2u=(1-(5/3)^2)/(1+(5/3)^2#

#=>cos2u=-16/9xx9/34-8/17#

#tan2u=(2tanu)/(1-tan^2u)#

#=>tan2u=(2xx5/3)/(1-(5/3)^2)=-10/3xx9/16=-15/8#