Given # 0< u< pi/2 # and #tanu=5/3#
we get #u=tan^-1(5/3)~~59^@#
So #2u=118^@->"In 2nd quadrant"#
Hence #sin2u->"+ve"#
But #tan2u and cos 2u ->"-ve"#
Now
#sin2u=(2tanu)/(1+tan^2u)#
#=>sin2u=(2xx5/3)/(1+(5/3)^2)=10/3xx9/34=15/17#
#cos2u=-(1-tan^2u)/(1+tan^2u)#
#=>cos2u=(1-(5/3)^2)/(1+(5/3)^2#
#=>cos2u=-16/9xx9/34-8/17#
#tan2u=(2tanu)/(1-tan^2u)#
#=>tan2u=(2xx5/3)/(1-(5/3)^2)=-10/3xx9/16=-15/8#