Question #d49bf

2 Answers
Feb 28, 2017

#= (cos (a + b)(cos (a - b)#

Explanation:

Use these trig identities:
cos (a + b) = cos a.cos b - sin a.sin b
cos (a - b) = cos a.cos b + sin a.sin b)
In this case:
#(cos a.cos b)^2 - (sin a.sin b)^2 = #
#= (cos a.cos b - sin a.sin b)(cos a.cos b + sin a.sin b) = #
# = cos (a + b)(cos (a - b)#

Feb 28, 2017

#(cosacosb)^2-(sinasinb)^2#

#=cos^2acos^2b-sin^2asin^2b#

#=cos^2a(1-sin^2b)-(1-cos^2a)sin^2b#

#=cos^2a-cos^2asin^2b-sin^2b+cos^2asin^2b#

#=cos^2a-sin^2b#

#=cos^2a-(1-cos^2b)#

#=cos^2a+cos^2b-1#