Question #757d3

2 Answers
Dec 16, 2016

1

Explanation:

use the rig identity using tangent and secant

#tan^2x+1=sec^2x#

#=>tan^2x=sec^2x-1#

#:.sec^2((3pi)/4)-1=tan^2((3pi)/4)#

#tan^2((3pi)/4)=[tan((3pi)/4)]^2=[-1]^2#

#=1#

Dec 16, 2016

1

Explanation:

Trig table of special arc gives:
#cos ((3pi)/4) = - sqrt2/2#
#sec ((3pi)/4) = 1/(cos) = - 2/sqrt2 = - sqrt2#
#sec^2 ((3pi)/4) = 2#
#sec^2 ((3pi)/4) - 1 = 2 - 1 = 1#