Question #261f3
1 Answer
Explanation:
#=lim_(x->oo)e^(xln((x+1)/(x+3)))#
#=e^(lim_(x->oo)xln((x+1)/(x+3))#
The above step is valid due to the continuity of
Solving the limit in the exponent, we have
#=lim_(x->oo)(d/dxln((x+1)/(x+3)))/(d/dx1/x)#
The above step applies L'Hopital's rule to a
#=lim_(x->oo)(d/dx(ln(x+1)-ln(x+3)))/(-1/x^2)#
#=lim_(x->oo)(1/(x+1)-1/(x+3))/(-1/x^2)#
#=lim_(x->oo)(2/(x^2+4x+3))/(-1/x^2)#
#=lim_(x->oo)-(2x^2)/(x^2+4x+3)#
#=lim_(x->oo)-2/(1+4/x+3/x^2)#
#=-2/(1+0+0)#
#=-2#
Substituting this into our original work, we get the final result: