Question #59b21

1 Answer
Nov 29, 2016

# 2xe^x-2=-2+2x+2x^2+(2x^3)/(2!)+(2x^4)/(3!)+(2x^5)/(4!) + ... x in RR#

Explanation:

Let #y = 2xe^x-2#

We could form the TS from first principles, but it is easier to do so from the known TS for e^x

# y=2x{e^x}-2 #
# :. y=2x{1+x+x^2/(2!)+x^3/(3!)+x^4/(4!) + ...}-2 #
# :. y={2x+2x^2+(2x^3)/(2!)+(2x^4)/(3!)+(2x^5)/(4!) + ...}-2 #
# :. y=-2+2x+2x^2+(2x^3)/(2!)+(2x^4)/(3!)+(2x^5)/(4!) + ... #

Incidentally the series #e^x# is valid for all #x in RR#, and hence so is the above series.


If you meant #x-2# as the exponent then let #y = 2xe^(x-2)#

# y=2x(e^xe^-2) =2/e^2 xe^x#
# :. y=2/e^2x{1+x+x^2/(2!)+x^3/(3!)+x^4/(4!) + ...} #
# :. y=2/e^2{x+x^2+x^3/(2!)+x^4/(3!)+x^5/(4!) + ...} #
# :. y=2/e^2x+2/e^2x^2+2/e^2x^3/(2!)+2/e^2x^4/(3!)+2/e^2x^5/(4!) + ... #