Question #a9af4
1 Answer
Jan 15, 2017
Well, you can recall a basic property of integrals, the integrals of a constant and
- The integral of a sum is the sum of the integrals:
#int f(x) + g(x)dx = int f(x)dx + int g(x)dx# . #int Cdx = Cx# , plus some integration constant if for an indefinite integral.#int sinxdx = -cosx# , plus some integration constant if for an indefinite integral.- For definite integrals, if
#F(x)# is the antiderivative, then#int_a^b f(x)dx = |[F(x)]|_(a)^(b) = F(b) - F(a)# .
So, simplify this and evaluate:
#color(blue)(int_(0)^(pi) 2 + sinxdx)#
#= int_(0)^(pi) 2dx + int_(0)^(pi) sinxdx#
#= 2|[x]|_(0)^(pi) + |[-cosx]|_(0)^(pi)#
#= 2(pi - 0) + [(-cospi) - (-cos0)]#
#= 2pi + [-(-1) - (-1)]#
#= 2pi + 1 + 1#
#= color(blue)(2pi + 2)#