Question #21463

2 Answers
Nov 30, 2016

For #0<=theta<2pi#, #theta = pi/5, (5pi)/6, (3pi)/2#

Explanation:

#cos^2theta-sin^2theta=sintheta#

Use the trig identity #sin^2theta + cos^2theta =1#
#=> cos^2theta=1-sin^2theta#

Substitute for #cos^2theta#

#1-sin^2theta-sin^2theta=sintheta#

#-2sin^2theta +1=sintheta#

#0=2sin^2theta+sintheta-1#

Factor

#(2sintheta-1)(sintheta+1)=0#

Set each factor equal to zero and solve.

#2sintheta - 1 =0 color(white)(aaa)sintheta+1=0#

#sintheta=1/2 color(white)(aaa)sintheta=-1#

For #0<=theta<2pi#, use unit circle to find

#theta =pi/6, (5pi)/6color(white)(aaa)theta =(3pi)/2#

Nov 30, 2016

#cos^2theta-sin^2theta=sintheta#

#=>cos2theta=cos(pi/2-theta)#

#2theta=2npi±(pi/2-theta)," where "n in ZZ#

When #2theta=2npi+(pi/2-theta)#

#=>3theta=(4n+1)pi/2#

#=>theta=(4n+1)pi/6#

Again when

#2theta=2npi-(pi/2-theta)#

#=>2theta=2npi-pi/2+theta#

#=>theta=(4n-1)pi/2#