Find the derivative using first principles? : # e^sinx#
2 Answers
Explanation:
The definition of the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So Let
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
# " " = lim_(h rarr 0) ( e^sin(x+h)-e^sinx )/h #
# " " = lim_(h rarr 0) ( e^sinx ( e^(sin(x+h)-sinx) - 1 ) ) / h #
# " "= e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / h #
# " " = e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / h * (sin(x+h)-sinx)/(sin(x+h)-sinx) #
# " " = e^sinx lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx) * (sin(x+h)-sinx)/h #
# " " = e^sinx * L_1 * L_2#
Where:
# L_1 = lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx)#
# L_2 = lim_(h rarr 0) (sin(x+h)-sinx)/h#
Let us examine the first limit,
Let
# L_1 = lim_(h rarr 0) ( e^(sin(x+h)-sinx) - 1 ) / (sin(x+h)-sinx) #
# \ \ \ \ = lim_(alpha rarr 0) ( e^alpha - 1 ) / alpha #
Now
# L_1 = 1#
Next we examine the second limit,
#sin A - sin B = 2 cos((A + B)/2) sin ((A - B)/2) #
And we get:
# L_2 = lim_(h rarr 0) (sin(x+h)-sinx)/h #
# \ \ \ \ = lim_(h rarr 0) (2cos((x+h+x)/2) sin ((x+h-x)/2))/h #
# \ \ \ \ = lim_(h rarr 0) (2cos((2x+h)/2) sin (h/2))/h #
# \ \ \ \ = lim_(h rarr 0) (cos(x+h/2) sin (h/2))/(h/2) #
# \ \ \ \ = lim_(h rarr 0) cos(x+h/2) * lim_(h rarr 0) (sin (h/2))/(h/2) #
Let
# L_2 = lim_(h rarr 0) cos(x+h/2) * lim_(beta rarr 0) (sin (beta))/(beta)#
And
# L_2 = lim_(h rarr 0) cos(x+h/2) * 1#
# \ \ \ \ = cos(x) #
Combining our results for
# f'(x)=e^sinx * L_1 * L_2#
# " "=e^sinx * 1 * cosx#
# " "=e^sinx cosx#
This is hardly from first principles but it is interesting.....
Explanation:
Start with the definition
We can see that:
And so: