Solve #cos^2x+cosx-1=0# ?

2 Answers
Dec 13, 2016

Given #cosx+ cos^2x=1 .......(1)#

#=>cosx=1-cos^2x#

#=>cosx=sin^2x#

Again from (1)

#cos^2x+cosx-1=0#

And #cosx=1/2(-1+sqrt(1^2-4*1*(-1)))#
#=>cosx=1/2(-1+sqrt5)#

other root

#cosx=1/2(-1-sqrt5)<-1->"not possible"#

So

# sin^12x +sin^10x + 3sin^8x +sin^6x#

#=(sin^2x)^6 +sin^10x + 3(sin^2x)^4 +sin^6x#

#= (cosx)^6 +sin^10x + 3(cosx)^4+sin^6x#

#= cos^6x +sin^6x + 3cos^4x +sin^10x#

#= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +(sin^2x)^5#

#=1^3-3cos^2xcosx + 3cos^4x +cos^5x#

#=1-3cos^3x(1- cosx) +cos^5x#

#=1-3cos^3x*cos^2x +cos^5x#

#=1-2cos^5x=1-2(cos^2x)cosx#

#=1-2(1-cosx)^2*cosx#

#=1-2cosx+4cos^2x-2cos^3x#

#=1-2cosx+4cos^2x-2cos^2x*cosx#

#=1-2cosx+4cos^2x-2(1-cosx)*cosx#

#=1-2cosx+4cos^2x-2cosx+2cos^2x#

#=1-4cosx+6cos^2x#

#=1-4cosx+6(1-cosx)#

#=7-10cosx#

#=7-10xx1/2(-1+sqrt5)#

#=12-5sqrt5#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When the given expression
#= sin^12x +3sin^10x + 3sin^8x +sin^6x#

#=(sin^2x)^6 +3sin^10x + 3(sin^2x)^4 +sin^6x#

#= (cosx)^6 +3sin^10x + 3(cosx)^4+sin^6x#

#= cos^6x +sin^6x + 3cos^4x +3sin^10x#

#= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +3(sin^2x)^5#

#=1^3-3cos^2xcosx + 3cos^4x +3cos^5x#

#=1-3cos^3x(1- cosx) +3cos^5x#

#=1-3cos^3x*cos^2x +3cos^5x#

#=1-3cos^5x +3cos^5x#

#=1#

Dec 13, 2016

#12 - 5 sqrt[5]#

Explanation:

Solving

#cos^2x+cosx-1=0# we obtain

#cosx = 1/2 (-1 pm sqrt[5])#.

and

#sinx = sqrt(1/2(-1+sqrt(5)))#

Putting this results into the big equation

#sin^12x+cdots+sin^6x# we obtain the answer.

Example

#(sqrt[1/2 (-1 + sqrt[5])])^16 = 1/2(47-21sqrt(5))#

so the answer is

#12 - 5 sqrt[5]#

If the big equation were instead

#sin^12x + 3 sin^10x + 3 sin^8x + sin^6x#

the result would be simply #1#