Given #cosx+ cos^2x=1 .......(1)#
#=>cosx=1-cos^2x#
#=>cosx=sin^2x#
Again from (1)
#cos^2x+cosx-1=0#
And #cosx=1/2(-1+sqrt(1^2-4*1*(-1)))#
#=>cosx=1/2(-1+sqrt5)#
other root
#cosx=1/2(-1-sqrt5)<-1->"not possible"#
So
# sin^12x +sin^10x + 3sin^8x +sin^6x#
#=(sin^2x)^6 +sin^10x + 3(sin^2x)^4 +sin^6x#
#= (cosx)^6 +sin^10x + 3(cosx)^4+sin^6x#
#= cos^6x +sin^6x + 3cos^4x +sin^10x#
#= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +(sin^2x)^5#
#=1^3-3cos^2xcosx + 3cos^4x +cos^5x#
#=1-3cos^3x(1- cosx) +cos^5x#
#=1-3cos^3x*cos^2x +cos^5x#
#=1-2cos^5x=1-2(cos^2x)cosx#
#=1-2(1-cosx)^2*cosx#
#=1-2cosx+4cos^2x-2cos^3x#
#=1-2cosx+4cos^2x-2cos^2x*cosx#
#=1-2cosx+4cos^2x-2(1-cosx)*cosx#
#=1-2cosx+4cos^2x-2cosx+2cos^2x#
#=1-4cosx+6cos^2x#
#=1-4cosx+6(1-cosx)#
#=7-10cosx#
#=7-10xx1/2(-1+sqrt5)#
#=12-5sqrt5#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the given expression
#= sin^12x +3sin^10x + 3sin^8x +sin^6x#
#=(sin^2x)^6 +3sin^10x + 3(sin^2x)^4 +sin^6x#
#= (cosx)^6 +3sin^10x + 3(cosx)^4+sin^6x#
#= cos^6x +sin^6x + 3cos^4x +3sin^10x#
#= (cos^2x +sin^2x)^3-3cos^2xsin^2x(cos^2x+sin^2x) + 3cos^4x +3(sin^2x)^5#
#=1^3-3cos^2xcosx + 3cos^4x +3cos^5x#
#=1-3cos^3x(1- cosx) +3cos^5x#
#=1-3cos^3x*cos^2x +3cos^5x#
#=1-3cos^5x +3cos^5x#
#=1#