#y=cot^4 2x# Find #dy/dx#?

1 Answer
Dec 14, 2016

#dy/dx=-8cot^3 2x * csc^2 2x#

Explanation:

We use the chain rule twice to find the derivative.

Method 1:

Recall the chain rule: If #y# can be written as #f[g(x)]#, then
#y'=f'[g(x)] * g'(x)#. If the input to #g# is again a function, we can continue recursively:

#y=f{g[h(x)]}#
#=> y'=f'{g[h(x)]} * g'[h(x)] * h'(x)#.

So, if
#y=cot^4 2x=(cot2x)^4#

then
#=>dy/dx=d/dx(cot 2x)^4#
#color(white)[=>dy/dx]=4(cot 2x)^3 * d/dx(cot 2x)#
#color(white)[=>dy/dx]=4cot^3 2x * (-csc^2 2x) * d/dx(2x)#
#color(white)[=>dy/dx]=-4cot^3 2x * csc^2 2x * 2#
#color(white)[=>dy/dx]=-8cot^3 2x * csc^2 2x#

Method 2:

We can also write the chain rule using Leibniz notation :

#dy/dx=dy/(du) * (du)/dx# but we need another term, so we extend:

#color(white)(dy/dx)=dy/(du) * (du)/(dv) * (dv)/(dx)#

Given
#y=cot^4 2x=(cot2x)^4#

Let #u=cot v# and #v=2x#.

Then #y=u^4#.

We have

#dy/dx=dy/(du) * (du)/(dv) * (dv)/(dx)#
#color(white)(dy/dx)=4u^3 * (-csc^2 v) * 2#

And since #u# is a function of #v#, we substitute:

#color(white)(dy/dx)=4(cot v)^3 * (-csc^2 v) * 2#

But #v# is a function of #x# too, so we substitute again:

#color(white)(dy/dx)=4(cot 2x)^3 * (-csc^2 2x) * 2#
#color(white)(dy/dx)=-8cot^3 2x * csc^2 2x#

Since #cot=cos/sin# and #csc=1/sin#, the trig functions can not be simplified any further.