What is the the value of #int sqrt(tanx/(sinxcosx)) dx#?

1 Answer
Dec 17, 2016

#= ln|secx + tanx| + C#

Explanation:

Start by simplifying the expression within the integral.

#=intsqrt((sinx/cosx)/(sinxcosx))dx#

#=intsqrt((sinx)/(cosxsinxcosx))dx#

#=intsqrt(1/cos^2x)dx#

#=int(1/cosx)dx#

#=int(secx)dx#

This is a tricky integral to do. Multiply everything by #secx+ tanx#.

#=int(secx xx (secx + tanx)/(secx + tanx))dx#

#=int(sec^2x + secxtanx)/(secx + tanx)dx#

Let #u = secx + tanx#. Then #(du)/dx = sec^2x + secxtanx# and #du = sec^2x + secxtanx dx#. Substitute:

#=int(du)/u #

#=ln|u| + C#

#= ln|secx + tanx| + C#

Hopefully this helps!