Let #arc tan(1/2)=alpha, arc tan(1/5)=beta, and, arc tan(1/8)=gamma#.
#:. tanalpha=1/2, tanbeta=1/5, &, tangamma=1/8#.
Recall that,
#arc tan theta =x, x in RR iff tan theta=x, theta in (-pi/2,pi/2).#
Since, all #tanalpha,tanbeta" &, "tangamma gt 0; alpha,beta,gamma in (0,pi/2)#.
Now, #tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)#
#=(1/2+1/5)/(1-1/10)=(7/10)/(9/10)=7/9, and, is +ve, so, alpha+beta in (0,pi/2)#.
Call #alpha+beta=delta," so, "tandelta=7/9, delta in (0,pi/2).#
Finally, #tan(gamma+delta)=(tangamma+tandelta)/(1-tangammatandelta)#
#=(1/8+7/9)/(1-7/72)=(65/72)/(65/72)=1#
Here, #delta, gamma in (0,pi/2) rArr gamma+delta in (0,pi); & because, tan(gamma+delta)=1,#
#:. gamma+delta=pi/4#
#rArr alpha+beta+gamma=pi/4, or,#
#arc tan(1/2)+arc tan(1/5)+arc tan(1/8)=pi/4#.