Question #2c4f7

1 Answer
Jan 27, 2017

ans. the derivative is #(-e^(-2y))/(x-1)^2#, where #y =ln sqrt((x+1)/(x-1))#.

Explanation:

see, at first let #y =ln sqrt((x+1)/(x-1))#
or # e^y = sqrt((x+1)/(x-1))#
or #e^(2y)# =#(x+1)/(x-1)# (sqaring)
now differenting the above w.r.t x we get ,
#dy/dx 2e^(2Y)#=#((x-1)-(x+1))/(x-1)^2# by #(d(u/v)/dx) method#
or #dy/dx e^(2y)# =#-1/(x-1)^2#
or we get #dy/dx =-e^(-2y)/(x-1)^2# where #y=lnsqrt((x+1)/(x-1))#.