How do you solve #x^3+2x^2 = 2# ?
1 Answer
Use Cardano's method to find real root:
#x_1 = 1/3(-2+root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33)))#
and related Complex roots.
Explanation:
First subtract
#x^3+2x^2-2 = 0#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+0+64-108+0 = -44#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27(x^3+2x^2-2)#
#color(white)(0)=27x^3+54x^2-54#
#color(white)(0)=(3x+2)^3-12(3x+2)-38#
#color(white)(0)=t^3-12t-38#
where
Cardano's method
We want to solve:
#t^3-12t-38=0#
Let
Then:
#u^3+v^3+3(uv-4)(u+v)-38=0#
Add the constraint
#u^3+64/u^3-38=0#
Multiply through by
#(u^3)^2-38(u^3)+64=0#
Use the quadratic formula to find:
#u^3=(38+-sqrt((-38)^2-4(1)(64)))/(2*1)#
#=(38+-sqrt(1444-256))/2#
#=(38+-sqrt(1188))/2#
#=(38+-6sqrt(33))/2#
#=19+-3sqrt(33)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33))#
and related Complex roots:
#t_2=omega root(3)(19+3sqrt(33))+omega^2 root(3)(19-3sqrt(33))#
#t_3=omega^2 root(3)(19+3sqrt(33))+omega root(3)(19-3sqrt(33))#
where
Now
#x_1 = 1/3(-2+root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33)))#
#x_2 = 1/3(-2+omega root(3)(19+3sqrt(33))+omega^2 root(3)(19-3sqrt(33)))#
#x_3 = 1/3(-2+omega^2 root(3)(19+3sqrt(33))+omega root(3)(19-3sqrt(33)))#