Question #33600

2 Answers
Feb 28, 2017

#1/2#.

Explanation:

Let #I=int_1^9 1/{sqrtx(1+sqrtx)^2}dx.#

Let us subst. #sqrtx=t, or, x=t^2," so that, "dx=2tdt.#

Also, #x=1 rArr t=sqrtx=sqrt1=1," &, for "x=9, t=3.#

Hence, #I=int_1^3 (2t)/{t(1+t)^2}dt=2int_1^3 (1+t)^-2dt.#

Now, recall the following Useful Result :

#int f(x)dx=F(x)+c rArr int f(ax+b)dx=1/aF(ax+b)+c', a!=0.#

Knowing that, #int t^-2dt=-1/t+C',# we have,

#I=2[-1/(1+t)]_1^3=-2[1/4-1/2]=-2(-1/4)=1/2.#

Enjoy Maths.!

Feb 28, 2017

#1/2#

Explanation:

Making #y = sqrt x# and consequently #dy = 1/2(dx)/y# we have

#int 1/(sqrtx*(1+sqrtx)^2)dx = int (2y)/(y(1+y)^2) dy = 2int (dy)/(1+y)^2=-2/(1+y)+C#

but

#int_1^9 1/(sqrtx*(1+sqrtx)^2)dx = 2int_1^(sqrt(9)) (dy)/(1+y)^2 = 1/2#