Find the Laplace Transform #f(t)=t/T# Over the interval #[0,T]#?
2 Answers
# ℒ \ {f(t)} = 1/(Ts^2 )\ \ \ # provided#s>0#
Explanation:
By definition;
# ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ f(t) \ dt#
And so if we have
# ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ t/T \ dt#
# " " = 1/T \ int_(0)^(oo) e^(-st) \ t \ dt#
We can integrate this by parts;
Let
# { (u,=t, => (du)/dt,=1), ((dv)/dt,=e^(-st), => v,=-1/se^(-st) ) :}#
Then plugging into the IBP formula:
# int \ (u)((dv)/dt) \ dt = (u)(v) - int \ (v)((du)/dt) \ dt #
Gives us:
# ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ t/T \ dt#
# " " = 1/T { [(t)(-1/se^(-st))]_0^oo - int_0^oo \ (-1/se^(-st))(1) \ dt }#
# " " = 1/T { [-t/se^(-st)]_0^oo + 1/s int_0^oo \ e^(-st) \ dt }#
# " " = 1/T { 0 + [-e^(-st)/s^2]_0^oo }#
# " " = 1/T 1/s^2 \ \ \ # provided#s>0#
Hence:
# ℒ \ {f(t)} = 1/(Ts^2 )\ \ \ # provided#s>0#
# ℒ \ {f(t)} = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2(1-e^(-Ts))) #
Explanation:
Over the interval
# u(t) = { (0,t lt 0), (1, t gt 1) :} #
So that for a single period:
# f_1(t) = t/T( u(t) - u(t-T) ) #
Then;
# ℒ \ {f_1(t)} = ℒ \ {t/T( u(t) - u(t-T) )}#
# " " = 1/T \ ℒ \ {t( u(t) - u(t-T) )}#
# " " = 1/T \ ℒ \ {tu(t) - tu(t-T) }#
We can then manipulate the function as follows;
# ℒ \ {f_1(t)} = 1/T \ ℒ \ {tu(t) - (t-T+T)u(t-T) }#
# " " = 1/T \ ℒ \ {tu(t) - (t-T)u(t-T) - (T)u(t-T)}#
We then take the Laplace Transform of the individual pieces, I won't derive from first principles but instead just use lookup tables and quote the result, as follows:
# {: ( f(t), ℒ \ [f(t)] ), ( tu(t), 1/s^2), ( (t-T)u(t-T), e^(-Ts)/(s^2) ), ( Tu(t-T), (Te^(-Ts))/s) :} #
And so we get:
# ℒ \ {f_1(t)} = 1/T \ {1/s^2 - e^(-Ts)/(s^2) - (Te^(-Ts))/s}#
# " " = 1/T \ { (1-e^(-Ts) - Tse^(-Ts))/(s^2) }#
# " " = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2) #
So then the Laplace Transform of the full periodic function is given by:
# ℒ \ {f(t)} = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2(1-e^(-Ts))) #