Find the Laplace Transform #f(t)=t/T# Over the interval #[0,T]#?

2 Answers
Mar 3, 2017

# ℒ \ {f(t)} = 1/(Ts^2 )\ \ \ # provided #s>0#

Explanation:

By definition;

# ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ f(t) \ dt#

And so if we have #f(t)=t/T#, for some constant #T#, then using the definition we have;

# ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ t/T \ dt#
# " " = 1/T \ int_(0)^(oo) e^(-st) \ t \ dt#

We can integrate this by parts;

Let # { (u,=t, => (du)/dt,=1), ((dv)/dt,=e^(-st), => v,=-1/se^(-st) ) :}#

Then plugging into the IBP formula:

# int \ (u)((dv)/dt) \ dt = (u)(v) - int \ (v)((du)/dt) \ dt #

Gives us:

# ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ t/T \ dt#
# " " = 1/T { [(t)(-1/se^(-st))]_0^oo - int_0^oo \ (-1/se^(-st))(1) \ dt }#
# " " = 1/T { [-t/se^(-st)]_0^oo + 1/s int_0^oo \ e^(-st) \ dt }#
# " " = 1/T { 0 + [-e^(-st)/s^2]_0^oo }#
# " " = 1/T 1/s^2 \ \ \ # provided #s>0#

Hence:

# ℒ \ {f(t)} = 1/(Ts^2 )\ \ \ # provided #s>0#

Mar 3, 2017

# ℒ \ {f(t)} = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2(1-e^(-Ts))) #

Explanation:

Over the interval #[0,T]# then #f(t)=t/T# (a straight line passing through the origin with gradient #1/T#). We can extend the function to #x in RR# (forming a single wave of the saw-wave function) using the Heavyside Unit step function:

# u(t) = { (0,t lt 0), (1, t gt 1) :} #

So that for a single period:

# f_1(t) = t/T( u(t) - u(t-T) ) #

enter image source here

Then;

# ℒ \ {f_1(t)} = ℒ \ {t/T( u(t) - u(t-T) )}#
# " " = 1/T \ ℒ \ {t( u(t) - u(t-T) )}#
# " " = 1/T \ ℒ \ {tu(t) - tu(t-T) }#

We can then manipulate the function as follows;

# ℒ \ {f_1(t)} = 1/T \ ℒ \ {tu(t) - (t-T+T)u(t-T) }#
# " " = 1/T \ ℒ \ {tu(t) - (t-T)u(t-T) - (T)u(t-T)}#

We then take the Laplace Transform of the individual pieces, I won't derive from first principles but instead just use lookup tables and quote the result, as follows:

# {: ( f(t), ℒ \ [f(t)] ), ( tu(t), 1/s^2), ( (t-T)u(t-T), e^(-Ts)/(s^2) ), ( Tu(t-T), (Te^(-Ts))/s) :} #

And so we get:

# ℒ \ {f_1(t)} = 1/T \ {1/s^2 - e^(-Ts)/(s^2) - (Te^(-Ts))/s}#
# " " = 1/T \ { (1-e^(-Ts) - Tse^(-Ts))/(s^2) }#
# " " = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2) #

So then the Laplace Transform of the full periodic function is given by:

# ℒ \ {f(t)} = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2(1-e^(-Ts))) #