#LHS=(sina-cosa+1)/(sina+cosa-1)#
As in the numerator of RHS is #cosa#, we multiply #cosa# with both numerator and denominator of LHS and proceed to simplify it to get the expression of RHS.
So #LHS=(cosa(sina-cosa+1))/(cosa(sina+cosa-1))#
#=(cosa(sina-cosa+1))/(cosa*sina+cos^2a-cosa))#
#=(cosa(sina-cosa+1))/(cosa*sina+1-sin^2a-cosa)#
#=(cosa(sina-cosa+1))/((1-sina)(1+sina)-cosa+cosasina)#
#=(cosa(sina-cosa+1))/((1-sina)(1+sina)-cosa(1-sina))#
#=(cosa(cancel(sina-cosa+1)))/((1-sina)(cancel(sina-cosa+1)))#
#=cosa/(1-sina)=RHS#