#(sinx-sinxcosx)/(sinx+sinxtanx)=(1-cosx)/(1+tanx)#?

1 Answer

Factor out #sinx# in the numerator and denominator of the left side fraction. See below for details:

Explanation:

We have:

#(sinx-sinxcosx)/(sinx+sinxtanx)=(1-cosx)/(1+tanx)#

I'm first going to factor out #sinx# in the numerator and denominator on the left side:

#(sinx(1-cosx))/(sinx(1+tanx))=(1-cosx)/(1+tanx)#

which I can write as:

#(sinx/sinx)(1-cosx)/(1+tanx)=(1-cosx)/(1+tanx)#

#(1)(1-cosx)/(1+tanx)=(1-cosx)/(1+tanx)#

#(1-cosx)/(1+tanx)=(1-cosx)/(1+tanx)color(white)(000)color(green)sqrt#