We will use the following Standard Limits to evaluate the reqd.
limit :
# (SL1) : lim_(h to 0) (a^h-1)/h=lna, a gt 0.#
# (SL2) : lim_(theta to 0) tan theta/theta=1.#
Let, #l=lim_(x to pi/4) (e^tan x -e)/(x-pi/4).#
#=lim {e(e^(tanx-1) -1)}/(x-pi/4),#
#=lim {(e(e^(tanx-1) -1))/(tanx-1)}{(tanx-1)/(x-pi/4)},#
#=e(l_1l_2),.........(star)# where,
#l_1=lim_(x to pi/4) (e^(tanx-1)-1)/(tanx-1).#
Subst. #h=tanx-1," so that, as "x to pi/4, h to 0.#
#:. l_1=lim_(h to 0) (e^h-1)/h,
#=lne........[because, (SL1)],#
#:. l_1=1......................(star1).#
For, #l_2," we take, "x=pi/4+theta," so; when," x to pi/4, theta to 0.#
#:. l_2=lim_(theta to 0)(tan(pi/4+theta)-1)/theta#
#=lim {(1+tantheta)/(1-tantheta)-1}/theta#
#=lim (2tantheta)/{theta(1-tantheta)}#
#=lim (tantheta/theta)(2/(1-tantheta))#
#=(1)(2/(1-0)), ..................[because, (SL2)]#
#:. l_2=2...................(star2).#
#"From "(star1),(star2) & (star), "the reqd. lim. "l" follows as,"#
#l=2e.#
Enjoy Maths.!