Question #5fced
1 Answer
Mar 1, 2017
Explanation:
The Maclaurin series for
sin(x)=sum_(n=0)^oo(-1)^n/((2n+1)!)x^(2n+1)sin(x)=∞∑n=0(−1)n(2n+1)!x2n+1
Thus,
sum_(n=0)^oo(-1)^n/((2n+1)!)(pi/6)^(2n+1)=sin(pi/6)=1/2∞∑n=0(−1)n(2n+1)!(π6)2n+1=sin(π6)=12