Question #74173 Calculus Limits Determining Limits Algebraically 1 Answer turksvids Dec 8, 2017 Given that #\Delta r=(12-6)/x=6/x# and #r_i=6+i*Delta r#: #lim_(x\to oo)(sum_(i=1)^x6r_i*sin(r_i)\Deltar)=int_6^(12)r*sin(r)dr# (It's kind of weird to use #x# the way it is used in this problem; mostly you see these problems with #n# replacing the #x#.) Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 984 views around the world You can reuse this answer Creative Commons License