How do you divide #x^5+x^3+x# by #x^2+x+1# ?
1 Answer
Mar 5, 2017
Explanation:
#(x^5+x^3+x)/(x^2+x+1) = ((x^5+x^4+x^3)-(x^4+x^3+x^2)+(x^3+x^2+x))/(x^2+x+1)#
#color(white)((x^5+x^3+x)/(x^2+x+1)) = ((x^3-x^2+x)color(red)(cancel(color(black)((x^2+x+1)))))/color(red)(cancel(color(black)((x^2+x+1))))#
#color(white)((x^5+x^3+x)/(x^2+x+1)) = x^3-x^2+x#