Considering
#I = int_0^oo c s e^(-alpha s) ds# we have
#d/(ds)(se^(-alpha s)) = e^(-alpha s) -alpha se^(-alpha s)# or
#c d/(ds)(se^(-alpha s)) = c e^(-alpha s) -alpha cse^(-alpha s)# or
#(c se^(-alpha s))_0^oo = int_0^oo c e^(-alpha s) ds -alpha I# and then
#I = 1/alpha(int_0^oo c e^(-alpha s) ds -(c se^(-alpha s))_0^oo)# but
#int_0^oo c e^(-alpha s) ds = -1/alpha c (e^(-alpha s))_0^oo# and then
#I = 1/alpha(-1/alpha(ce^(-alpha s))_0^oo-(c se^(-alpha s))_0^oo)# or
#I = 1/alpha(-1/alphac(0-1)) -c(0-0)) = c/alpha^2#
then
#int_0^oo 17 e^(-10s)ds = 17/10^2#