Question #a927e

2 Answers

We know

#cos2theta=cos^2theta-sin^2theta#

#cos2theta=cos^2theta-(1-cos^2theta)#

#cos2theta=2cos^2theta-1#

#cos^2theta=1/2*(1+cos2theta)#

#costheta=sqrt(1/2(1+cos2*theta))#

putting #theta=22.5# we get

#cos(22.5)=sqrt(1/2(1+cos45^o)#

#cos(22.5)=sqrt(1/2(1+1/sqrt2)#

Mar 12, 2017

#sqrt(2 + sqrt2)/2#

Explanation:

Call cos (22.5) = cos t
#cos 2t = cos (45) = sqrt2/2#
Use trig identity:
#2cos^2 t = 1 + cos 2t = 1 + sqrt2/2 = (2 + sqrt2)/2#
#cos^2 t = (2 + sqrt2)/4#
#cos t = +- sqrt(2 + sqrt2)/2#
Since cos 22.5 is positive, then, take the positive answer.
#cos (22.5) = cos t = sqrt(2 +sqrt2)/2#