If #BE#||#CD#, find #x#?

enter image source here

2 Answers
Mar 13, 2017

#x=10#

Explanation:

As #BE#||#CD#, #DeltaABE# and #DeltaACD# are similar.

Hence, #(AB)/(BC)=(AE)/(ED)#

i.e. #25/15=(7x-40)/(18)#

or #15xx(7x-40)=25xx18#

or #105x-600=450#

i.e. #105x=450+600=1050#

and #x=1050/105=10#

#x=10.#

Explanation:

Lines #BE, and CD# are Parallel, and, #AC and AD# are

transverses. Therefore, by Geometry, we know that,

#(AB)/(BC)=(AE)/(ED) rArr 25/15=(7x-40)/18.#

#rArr 7x-40=25/15*18=30 rArr 7x=30+40.#

#:. x=70/7=10.#

Enjoy Maths.!