# Question #41a5a

Mar 14, 2017

$\frac{x}{\frac{3}{5}} + \frac{y}{\frac{3}{2}} = 1$

#### Explanation:

$5 x + 2 y = 3$

divide with 3,

$\frac{5}{3} x + \frac{2}{3} y = 1$

rearrange the equation,
$\frac{x}{\frac{3}{5}} + \frac{y}{\frac{3}{2}} = 1$

therefore this equation intercept at $\frac{3}{5}$ at x-axis and $\frac{3}{2}$ at y-axis respectively

Mar 14, 2017

$y = - \frac{5}{2} x + \frac{3}{2}$

#### Explanation:

The equation of a line in $\textcolor{b l u e}{\text{slope-intercept form}}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{y = m x + b} \textcolor{w h i t e}{\frac{2}{2}} |}}}$
where m represents the slope and b, the y-intercept.

$\text{Rearrange "5x+2y=3" into this form}$

subtract 5x from both sides.

$\cancel{5 x} \cancel{- 5 x} + 2 y = - 5 x + 3$

$\Rightarrow 2 y = - 5 x + 3$

divide ALL terms on both sides by 2

$\frac{\cancel{2} y}{\cancel{2}} = - \frac{5}{2} x + \frac{3}{2}$

$\Rightarrow y = - \frac{5}{2} x + \frac{3}{2} \leftarrow \textcolor{red}{\text{ in slope-intercept form}}$