When #x->2#, #(x^15-2^15)/(x-2)# tends to #__#?

1 Answer
Mar 17, 2017

As #xrarr2#, #((x^15-2^15))/((x-2))rarr15xx2^14#

Explanation:

The function #((x^n-a^n))/((x-a))# (if #n# is a natural number) is an interesting function.

Note that #(x^n-a^n)# can be factorized as follows:

#(x^n-a^n)=x^n-ax^((n-1))+ax^((n-1))-a^2x^((n-2))+a^2x^((n-2))-a^3x^((n-3))+...............+x^2a^((n-2))-xa^((n-1))+xa^((n-1))-a^n#

= #x^((n-1))(x-a)+ax^((n-2))(x-a)+a^2x^((n-3))(x-a)+.......+xa^((n-2))(x-a)+a^((n-1))(x-a)#

= #(x-a)(x^((n-1))+ax^((n-2))+a^2x^((n-3))+....+xa^((n-2))+a^((n-1)))#

Hence #(x^15-2^15)=(x-2)(x^14+2^1x^13+2^2x^12+......+2^13x+2^14)#

and #(x^15-2^15)/(x-2)=x^14+2^1x^13+2^2x^12+......+2^13x+2^14#

and as #xrarr2#, #(x^15-2^15)/(x-2)rarr2^14xx15=15xx2^14#