# Question a4ba6

Mar 23, 2017

=58 cm 

#### Explanation:

$\frac{3}{120} \times 2320$

$= \frac{2320}{40}$

$= 58$

Mar 23, 2017

$58 c m$ on the map.

#### Explanation:

Scale questions can be calculated using direct proportion, because they always involve a comparison between two quantities.

Make sure that if the units are different, they match.
(either left and right side, or top and bottom)

Scale: $3 c m : 120 \text{miles}$

We are given miles, but we want the $c m$ distance on the map.

$\text{map distance" and " actual distance}$
$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots .} \downarrow \textcolor{w h i t e}{\ldots \ldots \ldots . .} \downarrow$
color(white)(.............)(3 cm)/(x cm) = (120 " miles")/(2320" miles")" "# cross multiply.
$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots .} \uparrow \textcolor{w h i t e}{\ldots \ldots \ldots . .} \uparrow$
$\text{map distance" and " actual distance}$

$120 x = 3 \times 2320$

$x = \frac{3 \times 2320}{120}$

$x = 58 c m$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can also find out how many miles $1 c m$ represents.

$3 c m$ represents $120$ miles
$1 c m$ represents $40$ miles

So if you divide the actual length by $40$ you will find the number of $c m$

$\frac{2320}{40} = 58 c m$