Question #2341e

1 Answer
Mar 25, 2017

#"Option B is true "#

Explanation:

#y=sqrt((1-x)/(1+x))" , "(d y)/(d x)=?#

#(d )/(d x) sqrt((1-x)/(1+x))=((-1*(1+x)-1*(1-x))/(1+x)^2)/(2*sqrt((1-x)/(1+x))#

#(d )/(d x) sqrt((1-x)/(1+x))=((-x-1+x-1)/(1+x)^2)/(2*sqrt((1-x)/(1+x))#

#(d )/(d x) sqrt((1-x)/(1+x))=((-2)/(1+x)^2)/(2*sqrt((1-x)/(1+x)))#

#(d )/(d x) sqrt((1-x)/(1+x))=-(1)/(sqrt((1-x)/(1+x))*(1+x)^2)#

#(d )/(d x) sqrt((1-x)/(1+x))=-(1*sqrt((1-x)/(1+x)))/(sqrt((1-x)/(1+x)) sqrt((1-x)/(1+x))*(1+x)^2 )#

#(d )/(d x) sqrt((1-x)/(1+x))=(sqrt((1-x)/(1+x)))/((1-x)/(1+x)*(1+x)^2)#

#(d )/(d x) sqrt((1-x)/(1+x))=(sqrt((1-x)/(1+x)))/((1-x)(1+x))#

#(1-x)(1+x)=1-x^2#

#(d )/(d x) sqrt((1-x)/(1+x))=(sqrt((1-x)/(1+x)))/(1-x^2)#

#"Substitute " sqrt((1-x)/(1+x))=y #

#(d )/(d x) sqrt((1-x)/(1+x))=y/(1-x^2)#