Question #1b137

1 Answer
Mar 25, 2017

We need to know that #d/dxlog(x)=1/x#. The chain rule then tells us that #d/dxlog(f(x))=1/f(x)f'(x)#.

Then:

#d/dxlog(x+sqrt(x^2+a^2))=1/(x+sqrt(x^2+a^2))d/dx(x+sqrt(x^2+a^2))#

So now all we need to do is find the derivative of #x+sqrt(x^2+a^2)#. The derivative of #x# is #1# and we find the derivative of #sqrt(x^2+a^2)# by doing the chain rule on #(x^2+a^2)^(1/2)#.

Then the derivative of the original function is:

#=1/(x+sqrt(x^2+a^2))(1+1/2(x^2+a^2)^(-1/2)d/dx(x^2+a^2))#

And the derivative of #x^2+a^2# is #2x#:

#=1/(x+sqrt(x^2+a^2))(1+1/(2sqrt(x^2+a^2))(2x))#

#=1/(x+sqrt(x^2+a^2))(1+x/(sqrt(x^2+a^2)))#

#=1/(x+sqrt(x^2+a^2))((sqrt(x^2+a^2)+x)/sqrt(x^2+a^2))#

#=1/sqrt(x^2+a^2)#