Question #06a16

1 Answer
Oct 29, 2017

see explanation.

Explanation:

enter image source here
see Fig 1,
given that height #h# of cone #=20# cm and slant height #h_s=25# cm,
let #r_c# be the radius of the base of the cone,
#r_c=sqrt(AC^2-AD^2)=sqrt(25^2-20^2)=15# cm
See Fig 2,
the largest possible hemisphere inside the cone touches the cone at #E#, so #AB# is tangent to the hemisphere at #E#,
#=> DeltaAED and DeltaADB# are similar,
#=> (ED)/(AD)=(DB)/(AB)#
#=># radius of hemisphere #r_h=ED=(20xx15)/25=12# cm

Volume of the cone #V_c=1/3*pi*r_c^2*h#
#=1/3*pi*15^2*20=1500pi " cm"^3#
Volume of hemisphere #V_h=2/3*pi*r_h^3#
#=2/3*pi*12^3=1152pi " cm"^3#
Volume of the remaining portion #=V_c-V_h=1500pi-1152pi=348pi " cm"^3#