Question #49d56 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer salamat · seol Mar 30, 2017 see explanation Explanation: let's take the left hand side (abbr. LHS) to prove the right hand side (abbr. RHS)... #(csc x - sin x)/cos x# #= \color(indianred)((1/sin x) -sin x)/cos x = \color(indianred)((1 - sin^2 x)/sin x)\times1/cos x# # = (1 - sin^2 x)/(sin x cos x) = cos^cancel(2)x/(sin x cancelcos x) # #= cos x/sin x = cot x# #\color(green)(\sqrt())# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1309 views around the world You can reuse this answer Creative Commons License