Question #8154d

1 Answer
Mar 30, 2017

Use the identities #sin2x = 2sinxcosx# and #cos2x = cos^2x - sin^2x#.

#(2sinxcosx)/sinx - (cos^2x - sin^2x)/cosx = 1/cosx#

#2cosx - (cos^2x - sin^2x)/cosx = 1/cosx#

#(2cos^2x - cos^2x + sin^2x)/cosx = 1/cosx#

#(cos^2x + sin^2x)/cosx = 1/cosx#

Now use #sin^2x + cos^2x =1#.

#1/cosx = 1/cosx#

The identity has been proved.

Practice exercises:

#1#. Is the following identity true or false?

#(cos2x)/(cosx + sinx)^2 = 1/(cosx - sinx)#

Solution

#1#. False

Hopefully this helps, and good luck!