Question #4c761

2 Answers
Apr 4, 2017

#LHS=2tanxcsc2x-tan^2x#

#=(2tanx)1/(sin2x)-tan^2x#

#=(2tanx)1/((2tanx)/(1+tan^2x))-tan^2x#

#=((2tanx)(1+tan^2x))/(2tanx)-tan^2x#

#=1+tan^2x-tan^2x=1=RHS#

Verified

Apr 4, 2017

Use the following identities:

#•tanx = sinx/cosx#
#•cscx = 1/sinx#
#•sin2x = 2sinxcosx#
#•cos^2x + sin^2x = 1#

Using these identities gradually, we have

#2(sinx/cosx)(1/sin(2x)) - sin^2x/cos^2x = 1#

#2(sinx/cosx)(1/(2sinxcosx)) - sin^2x/cos^2x= 1#

#1/cos^2x- sin^2x/cos^2x = 1#

#(1 - sin^2x)/cos^2x= 1#

#cos^2x/cos^2x = 1#

#1 = 1#

This is obviously true, so the identity has been proved.

Hopefully this helps!