Question #36cc4

2 Answers
Jun 22, 2017

#B'= (-12,6)#

Explanation:

Assuming that the rotation is about the origin, then the rotation matrix is:

#R(theta)= [ (cos(theta),-sin(theta)), (sin(theta), cos(theta)) ]#

Evaluating this matrix at #theta = 90^@#:

#R(90^@)= [ (0,-1), (1, 0) ]#

Hence, we have the transformation:

#[ (x'), (y') ] = [ (0,-1), (1, 0) ][ (x), (y) ] #

This gives us the two equations:

#x' = -y#
#y'= x#

Using the point #B=(6,12)#

#x' = -12#
#y' = 6#

#B'= (-12,6)#

Jun 22, 2017

#B'(-12,6)#

Explanation:

#"I am assuming a rotation about the origin"#

#"under a rotation about the origin of "90^@#

#"a point " (x,y)to(-y,x)#

#rArrB(6,12)toB'(-12,6)#