Question #235c3

2 Answers
Apr 6, 2017

# (x+2)^2+(y-4)^2=6^2#

Hence, the Centre of the Circle is #(-2,4)# and Radius #=6.#

Explanation:

#x^2+y^2+4x-8y=16#

Completing the squares for the terms #x^2+4x# and #y^2-8y#, we

get

# (x^2+4x+4)+(y^2-8y+16)=16+4+16=36#

#:. (x+2)^2+(y-4)^2=6^2#

Hence, the Centre of the Circle is #(-2,4)# and Radius #=6.#

Apr 6, 2017

#(x+2)^2+(y-4)^2=36#

Explanation:

The standard form of the #color(blue)"equation of a circle"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)((x-a)^2+(y-b)^2=r^2)color(white)(2/2)|)))#
where (a ,b) are the coordinates of the centre and r, the radius.

#"Rearrange " x^2+y^2+4x-8y=16" into this form"#

#"Using the method of "color(blue)"completing the square"#

#rArrx^2+4x+y^2-8y=16#

#rArr(x^2+4xcolor(red)(+4))+(y^2-8ycolor(magenta)(+16))=16color(red)(+4)color(magenta)(+16)#

#rArr(x+2)^2+(y-4)^2=36larr" in standard form"#

#rArr"centre "=(-2,4)" and radius" =6#

#"These allow a sketch of the circle to be made"#
graph{(y^2-8y+x^2+4x-16)=0 [-25.31, 25.32, -12.66, 12.65]}