How do we simplify #(1 - tanx)/(1 - cotx)#?
1 Answer
Apr 7, 2017
We simplify as follows, using the identities
#=(1 - sinx/cosx)/(1 - cosx/sinx)#
#=((cosx- sinx)/cosx)/((sinx - cosx)/sinx)#
#=(cosx - sinx)/cosx * sinx/(sinx - cosx)#
#=-(sinx - cosx)/cosx * sinx/(sinx - cosx)#
#=-sinx/cosx#
#=-tanx#
Practice Exercises
#(cotx + 1)/(tanx + 1)#
Solution
#=cotx#
Hopefully this helps!