Question #5e4be

1 Answer
Apr 22, 2017

#1/(2sqrt9.8)lnabs((sqrt9.8+x)/(sqrt9.8-x))+C#

Explanation:

Note that:

#1/(9.8-x^2)=1/((sqrt9.8+x)(sqrt9.8-x))#

#color(white)(1/(9.8-x^2))=A/(sqrt9.8+x)+B/(sqrt9.8-x)#

So:

#1=A(sqrt9.8-x)+B(sqrt9.8+x)#

Letting #x=sqrt9.8#:

#1=B(2sqrt9.8)" "=>" "B=1/(2sqrt9.8)#

Letting #x=-sqrt9.8#:

#1=A(2sqrt9.8)" "=>" "A=1/(2sqrt9.8)#

Thus:

#1/(9.8-x^2)=1/(2sqrt9.8)(1/(sqrt9.8+x))+1/(2sqrt9.8)(1/(sqrt9.8-x))#

So:

#intdx/(9.8-x^2)=1/(2sqrt9.8)intdx/(sqrt9.8+x)+1/(2sqrt9.8)intdx/(sqrt9.8-x)#

#color(white)(intdx/(9.8-x^2))=1/(2sqrt9.8)lnabs(sqrt9.8+x)-1/(2sqrt9.8)lnabs(sqrt9.8-x)#

#color(white)(intdx/(9.8-x^2))=1/(2sqrt9.8)lnabs((sqrt9.8+x)/(sqrt9.8-x))+C#