Question #f551a

1 Answer
Apr 11, 2017

The horizontal range is #=(4u^2)/(5g)#

Explanation:

Resolving in the vertical direction #uarr^+#

initial velocity is #u_y=usintheta#

Acceleration is #a=-g#

At the maximum height, #v=0#

We apply the equation of motion

#v^2=u^2+2as#

to calculate the greatest height

#0=u^2sin^2theta-2*g*h#

#h=(u^2sin^2theta)/(2g)#

We apply the equation of motion

#v=u+at#

to calculate the time to reach the greatest height

#0=usintheta-g*t#

#t=u/g*sintheta#

Resolving in the horizontal direction #rarr^+#

We apply the equation of motion

#s=u_x*t#

#=2ucostheta*u/g*sintheta#

#=2u^2/gcosthetasintheta#

It is given that

#s=2h#

Therefore,

#2u^2/gcosthetasintheta=2*(u^2sin^2theta)/(2g)#

#costhetasintheta=sin^2theta/2#

#tantheta=2#

#theta=63.4^@#

So,

The horizontal range is

#s=2u^2/gcosthetasintheta#

#=2u^2/gcos(63.4^@)sin(63.4^@)#

#=2u^2/g*1/sqrt5*2/sqrt5#

#s=(4u^2)/(5g)#