Question #f551a

1 Answer
Apr 11, 2017

The horizontal range is =(4u^2)/(5g)=4u25g

Explanation:

Resolving in the vertical direction uarr^++

initial velocity is u_y=usinthetauy=usinθ

Acceleration is a=-ga=g

At the maximum height, v=0v=0

We apply the equation of motion

v^2=u^2+2asv2=u2+2as

to calculate the greatest height

0=u^2sin^2theta-2*g*h0=u2sin2θ2gh

h=(u^2sin^2theta)/(2g)h=u2sin2θ2g

We apply the equation of motion

v=u+atv=u+at

to calculate the time to reach the greatest height

0=usintheta-g*t0=usinθgt

t=u/g*sinthetat=ugsinθ

Resolving in the horizontal direction rarr^++

We apply the equation of motion

s=u_x*ts=uxt

=2ucostheta*u/g*sintheta=2ucosθugsinθ

=2u^2/gcosthetasintheta=2u2gcosθsinθ

It is given that

s=2hs=2h

Therefore,

2u^2/gcosthetasintheta=2*(u^2sin^2theta)/(2g)2u2gcosθsinθ=2u2sin2θ2g

costhetasintheta=sin^2theta/2cosθsinθ=sin2θ2

tantheta=2tanθ=2

theta=63.4^@θ=63.4

So,

The horizontal range is

s=2u^2/gcosthetasinthetas=2u2gcosθsinθ

=2u^2/gcos(63.4^@)sin(63.4^@)=2u2gcos(63.4)sin(63.4)

=2u^2/g*1/sqrt5*2/sqrt5=2u2g1525

s=(4u^2)/(5g)s=4u25g