Resolving in the vertical direction uarr^+↑⏐⏐+
initial velocity is u_y=usinthetauy=usinθ
Acceleration is a=-ga=−g
At the maximum height, v=0v=0
We apply the equation of motion
v^2=u^2+2asv2=u2+2as
to calculate the greatest height
0=u^2sin^2theta-2*g*h0=u2sin2θ−2⋅g⋅h
h=(u^2sin^2theta)/(2g)h=u2sin2θ2g
We apply the equation of motion
v=u+atv=u+at
to calculate the time to reach the greatest height
0=usintheta-g*t0=usinθ−g⋅t
t=u/g*sinthetat=ug⋅sinθ
Resolving in the horizontal direction rarr^+→+
We apply the equation of motion
s=u_x*ts=ux⋅t
=2ucostheta*u/g*sintheta=2ucosθ⋅ug⋅sinθ
=2u^2/gcosthetasintheta=2u2gcosθsinθ
It is given that
s=2hs=2h
Therefore,
2u^2/gcosthetasintheta=2*(u^2sin^2theta)/(2g)2u2gcosθsinθ=2⋅u2sin2θ2g
costhetasintheta=sin^2theta/2cosθsinθ=sin2θ2
tantheta=2tanθ=2
theta=63.4^@θ=63.4∘
So,
The horizontal range is
s=2u^2/gcosthetasinthetas=2u2gcosθsinθ
=2u^2/gcos(63.4^@)sin(63.4^@)=2u2gcos(63.4∘)sin(63.4∘)
=2u^2/g*1/sqrt5*2/sqrt5=2u2g⋅1√5⋅2√5
s=(4u^2)/(5g)s=4u25g