Question #17e3c

2 Answers
May 3, 2017

#color(magenta)("Solution part 1 of 2")#

Full explanation given so a little long

Explanation:

You also need the x-intercepts

#color(blue)("The general shape of the graph")#

As #-2x^2# is negative the graph is of shape type #nn#

IF it had been #+2x^2#, ie positive, then the graph would have been of type #uu#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine "x_("vertex") ->" axis of symmetry")#

#color(brown)("Using part of the process for completing the square.")#

See my example https://socratic.org/s/aEmV2Z2e for the complete process (different values)

General case: given that #y=ax^2+bx+c#

we need #" "y=a(x^2+b/ax)+c#

#x_("vertex")=(-1/2)xxb/a#

So for this question: #y=color(red)(-2)(x^2+color(green)(4/(2))x)+1#

Note that #color(red)((-2))xx color(green)(4/2)x = -4x# as required

#" "color(blue)(ul(bar(|" "x_("vertex")=(-1/2)xx(4/2)=-1" "|))#

#" "color(blue)(ul(bar(|color(white)(2/2)"Axis of symmetry "->x=-1" "|))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine "y_("vertex"))#

Substitute for #x=-1#

#y=-2x^2-4x+1" "->" "y=-2(-1)^2-4(-1)+1#

#" "->" "y=" "-2" "+4" "+1#

#" "color(blue)(ul(bar(|color(white)(2/2)y_("vertex")=+3" "|))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#" "color(blue)(ul(bar(|color(white)(2/2)"Vertex "->(x,y)=(-1,+3)" "|))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine y-intercept")#

Consider the given equation: #y=-2x^2-4xcolor(red)(+1)#

#" "color(blue)(ul(bar(|color(white)(2/2)y_("intercept")=color(red)(+1)" "|))#

Why is this? The graph crosses the y-axis at #x=0#

#y=-2x^2-4x+1" "->" "y=-2(0)^2-4(0)+1#
#" "->" "y= " "0" "-0color(white)(.)+1#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the x-intercepts")#

Running out of space on this solution so adding another one as a continuation:

#color(magenta)("See solution 2 of 2")#

May 3, 2017

#color(magenta)("Solution part 2 of 2")#

Determine the x-intercepts

Again; full explanation given

Explanation:

You can either use the 'complete the square' method or use the standard formula approach

Complete the square #-># https://socratic.org/s/aEmWR5k7
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As the graph is of shape #nn# and the vertex is at #y=3# the graph crosses the x-axis so x-intercepts exist.

Given that #y-ax^2+bx+c# then

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#y=-2x^2-4x+1# gives:

#a=-2"; "b=-4"; "c=+1#

Substitute and solve for #x#

OR YOU CAN FACTORISE (not always easy)

#y=(-2x+-?)(x+-?) = -2x^2+.....# That part works!

#y=(-2x+1)(x+1) = -2x^2-2x+x+1# This is just not going to work so we are back to the formula.

#x=(+4+-sqrt((-4)^2-4(-2)(+1)))/(2(-2))#

#x=4/(-4)+-sqrt(16+8)/(-4)#

#x=-1+-sqrt(24)/(-4)#

But 24 = #2xx3xx2^2# so #sqrt(24)=2sqrt(6)#

#x=-1+-(2sqrt(6))/(-4)#

#x=-1+-sqrt(6)/2# Exact values

#x~~-2.225#
#x~~+0.225#

All to 2 decimal places

Tony B