Question #7b6b6

1 Answer
Apr 16, 2017

0.

Explanation:

"The Limit="lim_(x to 1){(x+2)/(x^2-5x+4)+(x-4)/(3x^2-9x+6)},

=lim_(xto1){(x+2)/((x-4)(x-1))+(x-4)/(3(x^2-3x+2))},

=lim_(x to 1){(x+2)/((x-4)(x-1))+(x-4)/(3(x-2)(x-1))},

=lim_(x to1) {3(x+2)(x-2)+(x-4)^2}/{3(x-4)(x-2)(x-1)},

=lim_(x to 1) {3(x^2-4)+(x^2-8x+16)}/{3(x-4)(x-2)(x-1)},

=lim_(x to 1) (4x^2-8x+4)/{3(x-4)(x-2)(x-1)},

=lim_(x to 1) {4(x^2-2x+1)}/{3(x-4)(x-2)(x-1)},

=lim_(x to 1) {4(x-1)^2}/{3(x-4)(x-2)(x-1)},

=lim_(x to 1) {4(x-1)}/{3(x-4)(x-2)},

={4(1-1)}/{3(1-4)(1-2)},

:." The Limit="0.

Enjoy Maths.!