What are the roots of #t^3+2t^2+4t+6 = 0# ?
1 Answer
Use Cardano's method to find roots:
#t_n = 1/3(-2+omega^(n-1) root(3)(53+9sqrt(41))+omega^(1-n) root(3)(53-9sqrt(41)))#
for
where
Explanation:
Given:
#t^3+2t^2+4t+6 = 0#
By the rational roots theorem, any rational roots of this cubic are expressible in the form
So the only possible rational roots are:
#+-1, +-2, +-3, +-6#
None of these work, so the cubic has no rational zeros.
So let's use a general solution method.
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 64-256-192-972+864 = -492#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(t)=27t^3+54t^2+108t+162#
#=(3t+2)^3+24(3t+2)+106#
#=x^3+24x+106#
where
Cardano's method
Let
Then:
#u^3+v^3+3(uv+8)(u+v)+106=0#
Add the constraint
#u^3-512/u^3+106=0#
Multiply through by
#(u^3)^2+106(u^3)-512=0#
Use the quadratic formula to find:
#u^3=(-106+-sqrt((106)^2-4(1)(-512)))/(2*1)#
#=(-106+-sqrt(11236+2048))/2#
#=-53+-9sqrt(41)#
Since this is Real and the derivation is symmetric in
#x_1 = root(3)(-53+9sqrt(41))+root(3)(-53-9sqrt(41))#
and related Complex roots:
#x_2 = omega root(3)(-53+9sqrt(41))+omega^2 root(3)(-53-9sqrt(41))#
#x_3 = omega^2 root(3)(-53+9sqrt(41))+omega root(3)(-53-9sqrt(41))#
where
Then using
#t_1 = 1/3(-2+root(3)(-53+9sqrt(41))+root(3)(-53-9sqrt(41)))#
#t_2 = 1/3(-2+omega root(3)(-53+9sqrt(41))+omega^2 root(3)(-53-9sqrt(41)))#
#t_3 = 1/3(-2+omega^2 root(3)(-53+9sqrt(41))+omega root(3)(-53-9sqrt(41)))#