How do you solve #sum_(n=1)^oo (x+1)^n/(n^2+n+2) = 2# ?
2 Answers
No real solutions.
Explanation:
now if
also
and
so
or making
We know that
and
so for
There is no real value of
Explanation:
First note that:
#sum_(n=1)^N 1/(n(n+1)) = sum_(n=1)^N (1/n-1/(n+1))#
#color(white)(sum_(n=1)^N 1/(n(n+1))) = sum_(n=1)^N 1/n-sum_(n=1)^N 1/(n+1)#
#color(white)(sum_(n=1)^N 1/(n(n+1))) = sum_(n=1)^N 1/n-sum_(n=2)^(N+1) 1/n#
#color(white)(sum_(n=1)^N 1/(n(n+1))) = 1+color(red)(cancel(color(black)(sum_(n=2)^N 1/n)))-color(red)(cancel(color(black)(sum_(n=2)^N 1/n))) - 1/(N+1)#
#color(white)(sum_(n=1)^N 1/(n(n+1))) = 1-1/(N+1)#
So:
#sum_(n=1)^oo 1/(n(n+1)) = lim_(N->oo) (1 - 1/(N+1)) = 1#
Then:
#n^2+n+2 > n^2+n = n(n+1)#
So:
#1/(n^2+n+2) < 1/(n(n+1))" "AA n > 0#
So:
#sum_(n=1)^oo 1/(n^2+n+2) < sum_(n=1)^oo 1/(n(n+1)) = 1#
So if
#abs(sum_(n=1)^oo (x+1)^n/(n^2+n+2)) <= sum_(n=1)^oo 1/(n^2+n+2) < 1#
Further note that:
#lim_(n->oo) (1/((n+1)^2+(n+1)+2))/(1/(n^2+n+2)) = 1#
Hence if
So for any real value of
So there are no real solutions to the original problem.