How do you solve #sum_(n=1)^oo (x+1)^n/(n^2+n+2) = 2# ?

2 Answers
Apr 26, 2017

No real solutions.

Explanation:

#sum_(k=1)^oo y^k/(k^2+k+2) le sum_(k=1)^oo y^k/(k(k+1))#

#sum_(k=1)^oo y^k/(k(k+1))=1/2(sum_(k=1)^oo y^k/k-sum_(k=1)^oo y^k/(k+1))#

now if #abs y < 1#

#sum_(k=0)^oo y^k = 1/(1-y)# and

#sum_(k=1)^oo y^k/k=int (dy/(1-y))=-log_eabs(1-y)#

also

#sum_(k=1)^oo y^k/(k+1)=1/y sum_(k=2)^oo y^k/k#

and

#sum_(k=2)^oo y^k/k=int dy/(1-y)-y#

so

#sum_(k=1)^oo y^k/(k(k+1))=(-log_e(1-y)-1/y(-log_e (1-y)-y)) = 1/(y)(y+(1-y)log_eabs(1-y))#

or making #y = x+1#

#sum_(k=1)^oo (x+1)^k/(k(k+1)) = (1 + x - x log_eabs[x])/( (1 + x))#

We know that

#sum_(k=1)^oo y^k/(k^2+k+2) < (1 + x - x log_eabs[x])/( (1 + x))#

and

#max_x ( (1 + x - x log_eabs[x])/( (1 + x)) )approx 1 < 39/4#

so for #abs(x+1) < 1# the equation

#sum_(k=1)^oo (x+1)^k/(k^2+k+2)=39/4# has not real solutions.

Apr 26, 2017

There is no real value of #x# satisfying the given equation.

Explanation:

First note that:

#sum_(n=1)^N 1/(n(n+1)) = sum_(n=1)^N (1/n-1/(n+1))#

#color(white)(sum_(n=1)^N 1/(n(n+1))) = sum_(n=1)^N 1/n-sum_(n=1)^N 1/(n+1)#

#color(white)(sum_(n=1)^N 1/(n(n+1))) = sum_(n=1)^N 1/n-sum_(n=2)^(N+1) 1/n#

#color(white)(sum_(n=1)^N 1/(n(n+1))) = 1+color(red)(cancel(color(black)(sum_(n=2)^N 1/n)))-color(red)(cancel(color(black)(sum_(n=2)^N 1/n))) - 1/(N+1)#

#color(white)(sum_(n=1)^N 1/(n(n+1))) = 1-1/(N+1)#

So:

#sum_(n=1)^oo 1/(n(n+1)) = lim_(N->oo) (1 - 1/(N+1)) = 1#

Then:

#n^2+n+2 > n^2+n = n(n+1)#

So:

#1/(n^2+n+2) < 1/(n(n+1))" "AA n > 0#

So:

#sum_(n=1)^oo 1/(n^2+n+2) < sum_(n=1)^oo 1/(n(n+1)) = 1#

So if #abs(x+1) <= 1# then:

#abs(sum_(n=1)^oo (x+1)^n/(n^2+n+2)) <= sum_(n=1)^oo 1/(n^2+n+2) < 1#

#color(white)()#
Further note that:

#lim_(n->oo) (1/((n+1)^2+(n+1)+2))/(1/(n^2+n+2)) = 1#

Hence if #abs(x+1) > 1# then #sum_(n=1)^oo (x+1)^n/(n^2+n+2)# diverges by the ratio test.

So for any real value of #x# the sum either diverges or has value with absolute value less than #1#.

So there are no real solutions to the original problem.