Differentiate #y=f(x)=1/sqrt(1-x)# using the definition of derivative #(dy)/(dx)=lim_(h->0)(f(x+h)-f(x))/h#?

1 Answer
Nov 25, 2017

#(dy)/(dx)=1/(2(1-x)sqrt(1-x))#

Explanation:

We have #y=f(x)=1/sqrt(1-x)#

then #f(x+h)=1/sqrt(1-x-h)#

and #f(x+h)-f(x)=1/sqrt(1-x-h)-1/sqrt(1-x)#

= #(sqrt(1-x)-sqrt(1-x-h))/(sqrt((1-x)(1-x-h)))#

= #(sqrt(1-x)-sqrt(1-x-h))/(sqrt((1-x)(1-x-h)))xx(sqrt(1-x)+sqrt(1-x-h))/(sqrt(1-x)+sqrt(1-x-h))#

= #(1-x-1+x+h)/(sqrt((1-x)(1-x-h))(sqrt(1-x)+sqrt(1-x-h)))#

= #h/(sqrt((1-x)(1-x-h))(sqrt(1-x)+sqrt(1-x-h)))#

and #(dy)/(dx)=lim_(h->0)(f(x+h)-f(x))/h#

= #lim_(h->0)1/(sqrt((1-x)(1-x-h))(sqrt(1-x)+sqrt(1-x-h)))#

= #1/(2(1-x)sqrt(1-x))#