Question #66b69

Aug 31, 2017

You need to use that ${90}^{o} = \frac{\pi}{2}$

Explanation:

If we use the above, we know that ${30}^{o} = {90}^{o} / 3 = \frac{\frac{\pi}{2}}{3} = \frac{\pi}{6}$

Aug 31, 2017

$0.52 r a d$

Explanation:

Here are the steps!

By using this formula;

$\text{Radians" = pi/180^0 xx "Degrees}$

or

$\text{Degrees" = 180^0/pi xx "Radians}$

Expressing ${30}^{0}$ in Radians should be using this formula (Converting from Degrees to Radians)

$\Rightarrow {30}^{0}$ in Radians $\to \text{Degrees" = 180^0/pi xx "Radians}$

$\textcolor{w h i t e}{\times \times \times \xi i i \times \times} \to {30}^{0} = {180}^{0} / \left(\frac{22}{7}\right) \times \text{Radians}$

$\textcolor{w h i t e}{\times \times \times \xi i i \times \times} \to \frac{660}{7} = \frac{180}{1} \text{Radians}$

$\textcolor{w h i t e}{\times \times \times \xi i i \times \times} \to 180 \times 7 \textcolor{w h i t e}{x} \text{Radians} = 660$

$\textcolor{w h i t e}{\times \times \times \xi i i \times \times} \to 1260 \textcolor{w h i t e}{x} \text{Radians} = 660$

$\textcolor{w h i t e}{\times \times \times \xi i i \times \times} \to \text{Radians} = \frac{660}{1260}$

$\textcolor{w h i t e}{\times \times \times \xi i i \times \times} \to \text{Radians} = 0.52 r a d$