What is the first differential of #y=ln(sqrt(x^3-x))#?

1 Answer
May 12, 2017

#dy/dx= (3x^2-1)/(2x(x^2-1))#

Explanation:

#y=ln(sqrt(x^3-x))#

First let's simplify #y#

#y=ln(x^3-x)^(1/2) =1/2ln(x^3-x)#

Applying the chain rule and the standard differential for #lnx#

#dy/dx= 1/2*1/(x^3-x) * (3x^2-1)#

#= (3x^2-1)/(2(x^3-x))#

#= (3x^2-1)/(2x(x^2-1))#