#sqrtx div sqrt(1-x)+sqrt(1-x)=5÷2#

#rArr sqrtx/sqrt(1 - x) + sqrt (1 - x) = 5/2#

**Taking L.C.M**

#rArr (sqrtx + 1 - x)/sqrt(1 - x) = 5/2#

**Cross Multiply**

#rArr 2 (sqrtx + 1 - x) = 5 sqrt(1 - x)#

#rArr 2sqrtx + 2 - 2x = 5 sqrt(1 - x)#

**Collect Like Terms**

#rArr 2sqrtx - 5 sqrt(1 - x) = 2x + 2#

**Square both sides**

#rArr (2sqrtx - 5 sqrt(1 - x))^2 = (2x + 2)^2#

#rArr (2sqrtx - 5 sqrt(1 - x)) (2sqrtx - 5 sqrt(1 - x)) = (2x + 2) (2x + 2)#

#rArr 4(x) - 20sqrt(1 - x) + 25(1 - x) = 4x^2 + 8x + 4#

#rArr 4(x) - 20sqrt(1 - x) + 25 - 25x = 4x^2 + 8x + 4#

#rArr- 20sqrt(1 - x) + 25 - 21x = 4x^2 + 8x + 4#

#rArr- 20sqrt(1 - x) = 4x^2 + 8x + 4 +21x - 25#

#rArr- 20sqrt(1 - x) = 4x^2 + 29x - 21#

**Square both sides**

#rArr (- 20sqrt(1 - x))^2 = (4x^2 + 29x - 21)^2#

#rArr 400 (1 - x) = (4x^2 + 29x - 21)^2#

#rArr 400 - 400x = (4x^2 + 29x - 21) (4x^2 + 29x - 21)#

#rArr 400 - 400x = 16x^4 + 232x^3 + 673x^2 - 1218x + 441#

**Collect like terms**

#rArr 16x^4 + 232x^3 + 673x^2 - 1218x + 400x + 441 - 400 = 0#

#rArr 16x^4 + 232x^3 + 673x^2 - 818x + 41 = 0#

**Solve the polynomial above..**

That's how far i could get, But in my own point of view, i strongly doubt the Authenticity of the question..