Differentiate #f(x)=2x-3# using first principal?

2 Answers
Jun 22, 2017

#(df)/(dx)=2#

Explanation:

For a function #f(x)#, its derivative using first principal is given by

#(df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h#

Here we have #f(x)=2x-3#,

hence #f(x+h)=2(x+h)-3=2x+2h-3#

and #f(x+h)=f(x)=2h#

and #(df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h#

= #Lt_(h->0)(2h)/h#

= #Lt_(h->0)2#

= #2#

Jun 22, 2017

#f'(x)=2#

Explanation:

#"differentiating from first principles"#

#f'(x)=lim_(hto0)(f(x+h)-f(x))/h#

#color(white)(f'(x))=lim_(hto0)(2(x+h)-3-2x+3)/h#

#color(white)(f'(x))=lim_(hto0)(2x+2h-2x)/h#

#color(white)(f'(x))=lim_(hto0)(2cancel(h))/cancel(h)=2#